The discovery of experts' decision rules from qualitative bankruptcy data using genetic algorithms
نویسندگان
چکیده
Numerous studies on bankruptcy prediction have widely applied data mining techniques to finding out the useful knowledge automatically from financial databases, while few studies have proposed qualitative data mining approaches capable of eliciting and representing experts’ problem-solving knowledge from experts’ qualitative decisions. In an actual risk assessment process, the discovery of bankruptcy prediction knowledge from experts is still regarded as an important task because experts’ predictions depend on their subjectivity. This paper proposes a genetic algorithm-based data mining method for discovering bankruptcy decision rules from experts’ qualitative decisions. The results of the experiment show that the genetic algorithm generates the rules which have the higher accuracy and larger coverage than inductive learning methods and neural networks. They also indicate that considerable agreement is achieved between the GA method and experts’ problemsolving knowledge. This means that the proposed method is a suitable tool for eliciting and representing experts’ decision rules and thus it provides effective decision supports for solving bankruptcy prediction problems. q 2003 Elsevier Ltd. All rights reserved.
منابع مشابه
An Analysis on Qualitative Bankruptcy Prediction Rules using Ant-Miner
Qualitative bankruptcy prediction rules represent experts' problem-solving knowledge to predict qualitative bankruptcy. The objective of this research is predicting qualitative bankruptcy using antminer algorithm. Qualitative data are subjective and more difficult to measure. This approach uses qualitative risk factors which include fourteen internal risk factors and sixty eight external risk f...
متن کاملEffective Prediction of Bankruptcy based on the Qualitative factors using FID3 Algorithm
Bankruptcy is one of the most important issues in Financial Management and investment. Numerous studies on Bankruptcy Prediction have been carried out considering Quantitative factors and they applied different techniques on it to predict Bankruptcy, while only fewer studies have proposed and considered Qualitative factors for prediction of Bankruptcy and even then failure of bankruptcy persist...
متن کاملKnowledge discovery from patients’ behavior via clustering-classification algorithms based on weighted eRFM and CLV model: An empirical study in public health care services
The rapid growing of information technology (IT) motivates and makes competitive advantages in health care industry. Nowadays, many hospitals try to build a successful customer relationship management (CRM) to recognize target and potential patients, increase patient loyalty and satisfaction and finally maximize their profitability. Many hospitals have large data warehouses containing customer ...
متن کاملKnowledge discovery from patients’ behavior via clustering-classification algorithms based on weighted eRFM and CLV model: An empirical study in public health care services
The rapid growing of information technology (IT) motivates and makes competitive advantages in health care industry. Nowadays, many hospitals try to build a successful customer relationship management (CRM) to recognize target and potential patients, increase patient loyalty and satisfaction and finally maximize their profitability. Many hospitals have large data warehouses containing customer ...
متن کاملUsing the Imperialistic Competitive Algorithm Model in Bankruptcy Prediction and Comparison with Genetic Algorithm Model in Listed Companies of Tehran Stock Exchange
Bankruptcy prediction is a major issue in classification of companies. Since bankruptcy is extremely costly, investors, owners, managers, creditors, and government agencies are interested in evaluating the financial status of companies. This study tried to predict bankruptcy among companies registered in Tehran Stock Exchange (Iran) by designing imperialist competitive algorithm and genetic alg...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Expert Syst. Appl.
دوره 25 شماره
صفحات -
تاریخ انتشار 2003